3.9 \(\int (a+b \text {sech}^2(c+d x))^2 \sinh ^4(c+d x) \, dx\)

Optimal. Leaf size=114 \[ -\frac {\left (a^2-8 a b+4 b^2\right ) \tanh (c+d x)}{4 d}+\frac {1}{8} x \left (3 a^2-24 a b+8 b^2\right )+\frac {a^2 \sinh ^4(c+d x) \tanh (c+d x)}{4 d}-\frac {a (a-8 b) \sinh (c+d x) \cosh (c+d x)}{8 d}-\frac {b^2 \tanh ^3(c+d x)}{3 d} \]

[Out]

1/8*(3*a^2-24*a*b+8*b^2)*x-1/8*a*(a-8*b)*cosh(d*x+c)*sinh(d*x+c)/d-1/4*(a^2-8*a*b+4*b^2)*tanh(d*x+c)/d+1/4*a^2
*sinh(d*x+c)^4*tanh(d*x+c)/d-1/3*b^2*tanh(d*x+c)^3/d

________________________________________________________________________________________

Rubi [A]  time = 0.14, antiderivative size = 114, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {4132, 463, 455, 1153, 206} \[ -\frac {\left (a^2-8 a b+4 b^2\right ) \tanh (c+d x)}{4 d}+\frac {1}{8} x \left (3 a^2-24 a b+8 b^2\right )+\frac {a^2 \sinh ^4(c+d x) \tanh (c+d x)}{4 d}-\frac {a (a-8 b) \sinh (c+d x) \cosh (c+d x)}{8 d}-\frac {b^2 \tanh ^3(c+d x)}{3 d} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Sech[c + d*x]^2)^2*Sinh[c + d*x]^4,x]

[Out]

((3*a^2 - 24*a*b + 8*b^2)*x)/8 - (a*(a - 8*b)*Cosh[c + d*x]*Sinh[c + d*x])/(8*d) - ((a^2 - 8*a*b + 4*b^2)*Tanh
[c + d*x])/(4*d) + (a^2*Sinh[c + d*x]^4*Tanh[c + d*x])/(4*d) - (b^2*Tanh[c + d*x]^3)/(3*d)

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 455

Int[(x_)^(m_)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2), x_Symbol] :> Simp[((-a)^(m/2 - 1)*(b*c - a*d)*
x*(a + b*x^2)^(p + 1))/(2*b^(m/2 + 1)*(p + 1)), x] + Dist[1/(2*b^(m/2 + 1)*(p + 1)), Int[(a + b*x^2)^(p + 1)*E
xpandToSum[2*b*(p + 1)*x^2*Together[(b^(m/2)*x^(m - 2)*(c + d*x^2) - (-a)^(m/2 - 1)*(b*c - a*d))/(a + b*x^2)]
- (-a)^(m/2 - 1)*(b*c - a*d), x], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && IGtQ[
m/2, 0] && (IntegerQ[p] || EqQ[m + 2*p + 1, 0])

Rule 463

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^2, x_Symbol] :> -Simp[((b*c - a*
d)^2*(e*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a*b^2*e*n*(p + 1)), x] + Dist[1/(a*b^2*n*(p + 1)), Int[(e*x)^m*(a + b
*x^n)^(p + 1)*Simp[(b*c - a*d)^2*(m + 1) + b^2*c^2*n*(p + 1) + a*b*d^2*n*(p + 1)*x^n, x], x], x] /; FreeQ[{a,
b, c, d, e, m, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[p, -1]

Rule 1153

Int[((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(
d + e*x^2)^q*(a + b*x^2 + c*x^4)^p, x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 -
b*d*e + a*e^2, 0] && IGtQ[p, 0] && IGtQ[q, -2]

Rule 4132

Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*sin[(e_.) + (f_.)*(x_)]^(m_), x_Symbol] :> With[{ff = Fr
eeFactors[Tan[e + f*x], x]}, Dist[ff^(m + 1)/f, Subst[Int[(x^m*ExpandToSum[a + b*(1 + ff^2*x^2)^(n/2), x]^p)/(
1 + ff^2*x^2)^(m/2 + 1), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] && Integer
Q[n/2]

Rubi steps

\begin {align*} \int \left (a+b \text {sech}^2(c+d x)\right )^2 \sinh ^4(c+d x) \, dx &=\frac {\operatorname {Subst}\left (\int \frac {x^4 \left (a+b-b x^2\right )^2}{\left (1-x^2\right )^3} \, dx,x,\tanh (c+d x)\right )}{d}\\ &=\frac {a^2 \sinh ^4(c+d x) \tanh (c+d x)}{4 d}-\frac {\operatorname {Subst}\left (\int \frac {x^4 \left (5 a^2-4 (a+b)^2+4 b^2 x^2\right )}{\left (1-x^2\right )^2} \, dx,x,\tanh (c+d x)\right )}{4 d}\\ &=-\frac {a (a-8 b) \cosh (c+d x) \sinh (c+d x)}{8 d}+\frac {a^2 \sinh ^4(c+d x) \tanh (c+d x)}{4 d}-\frac {\operatorname {Subst}\left (\int \frac {-a (a-8 b)-2 a (a-8 b) x^2-8 b^2 x^4}{1-x^2} \, dx,x,\tanh (c+d x)\right )}{8 d}\\ &=-\frac {a (a-8 b) \cosh (c+d x) \sinh (c+d x)}{8 d}+\frac {a^2 \sinh ^4(c+d x) \tanh (c+d x)}{4 d}-\frac {\operatorname {Subst}\left (\int \left (2 \left (a^2-8 a b+4 b^2\right )+8 b^2 x^2+\frac {-3 a^2+24 a b-8 b^2}{1-x^2}\right ) \, dx,x,\tanh (c+d x)\right )}{8 d}\\ &=-\frac {a (a-8 b) \cosh (c+d x) \sinh (c+d x)}{8 d}-\frac {\left (a^2-8 a b+4 b^2\right ) \tanh (c+d x)}{4 d}+\frac {a^2 \sinh ^4(c+d x) \tanh (c+d x)}{4 d}-\frac {b^2 \tanh ^3(c+d x)}{3 d}+\frac {\left (3 a^2-24 a b+8 b^2\right ) \operatorname {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\tanh (c+d x)\right )}{8 d}\\ &=\frac {1}{8} \left (3 a^2-24 a b+8 b^2\right ) x-\frac {a (a-8 b) \cosh (c+d x) \sinh (c+d x)}{8 d}-\frac {\left (a^2-8 a b+4 b^2\right ) \tanh (c+d x)}{4 d}+\frac {a^2 \sinh ^4(c+d x) \tanh (c+d x)}{4 d}-\frac {b^2 \tanh ^3(c+d x)}{3 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.66, size = 153, normalized size = 1.34 \[ \frac {\text {sech}^3(c+d x) \left (a \cosh ^2(c+d x)+b\right )^2 \left (3 \cosh ^3(c+d x) \left (4 d x \left (3 a^2-24 a b+8 b^2\right )+a^2 \sinh (4 (c+d x))-8 a (a-2 b) \sinh (2 (c+d x))\right )+64 b (3 a-2 b) \text {sech}(c) \sinh (d x) \cosh ^2(c+d x)+32 b^2 \tanh (c) \cosh (c+d x)+32 b^2 \text {sech}(c) \sinh (d x)\right )}{24 d (a \cosh (2 (c+d x))+a+2 b)^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Sech[c + d*x]^2)^2*Sinh[c + d*x]^4,x]

[Out]

((b + a*Cosh[c + d*x]^2)^2*Sech[c + d*x]^3*(32*b^2*Sech[c]*Sinh[d*x] + 64*(3*a - 2*b)*b*Cosh[c + d*x]^2*Sech[c
]*Sinh[d*x] + 3*Cosh[c + d*x]^3*(4*(3*a^2 - 24*a*b + 8*b^2)*d*x - 8*a*(a - 2*b)*Sinh[2*(c + d*x)] + a^2*Sinh[4
*(c + d*x)]) + 32*b^2*Cosh[c + d*x]*Tanh[c]))/(24*d*(a + 2*b + a*Cosh[2*(c + d*x)])^2)

________________________________________________________________________________________

fricas [B]  time = 0.42, size = 342, normalized size = 3.00 \[ \frac {3 \, a^{2} \sinh \left (d x + c\right )^{7} + 3 \, {\left (21 \, a^{2} \cosh \left (d x + c\right )^{2} - 5 \, a^{2} + 16 \, a b\right )} \sinh \left (d x + c\right )^{5} + 8 \, {\left (3 \, {\left (3 \, a^{2} - 24 \, a b + 8 \, b^{2}\right )} d x - 48 \, a b + 32 \, b^{2}\right )} \cosh \left (d x + c\right )^{3} + 24 \, {\left (3 \, {\left (3 \, a^{2} - 24 \, a b + 8 \, b^{2}\right )} d x - 48 \, a b + 32 \, b^{2}\right )} \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{2} + {\left (105 \, a^{2} \cosh \left (d x + c\right )^{4} - 30 \, {\left (5 \, a^{2} - 16 \, a b\right )} \cosh \left (d x + c\right )^{2} - 63 \, a^{2} + 528 \, a b - 256 \, b^{2}\right )} \sinh \left (d x + c\right )^{3} + 24 \, {\left (3 \, {\left (3 \, a^{2} - 24 \, a b + 8 \, b^{2}\right )} d x - 48 \, a b + 32 \, b^{2}\right )} \cosh \left (d x + c\right ) + 3 \, {\left (7 \, a^{2} \cosh \left (d x + c\right )^{6} - 5 \, {\left (5 \, a^{2} - 16 \, a b\right )} \cosh \left (d x + c\right )^{4} - {\left (63 \, a^{2} - 528 \, a b + 256 \, b^{2}\right )} \cosh \left (d x + c\right )^{2} - 15 \, a^{2} + 160 \, a b\right )} \sinh \left (d x + c\right )}{192 \, {\left (d \cosh \left (d x + c\right )^{3} + 3 \, d \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{2} + 3 \, d \cosh \left (d x + c\right )\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sech(d*x+c)^2)^2*sinh(d*x+c)^4,x, algorithm="fricas")

[Out]

1/192*(3*a^2*sinh(d*x + c)^7 + 3*(21*a^2*cosh(d*x + c)^2 - 5*a^2 + 16*a*b)*sinh(d*x + c)^5 + 8*(3*(3*a^2 - 24*
a*b + 8*b^2)*d*x - 48*a*b + 32*b^2)*cosh(d*x + c)^3 + 24*(3*(3*a^2 - 24*a*b + 8*b^2)*d*x - 48*a*b + 32*b^2)*co
sh(d*x + c)*sinh(d*x + c)^2 + (105*a^2*cosh(d*x + c)^4 - 30*(5*a^2 - 16*a*b)*cosh(d*x + c)^2 - 63*a^2 + 528*a*
b - 256*b^2)*sinh(d*x + c)^3 + 24*(3*(3*a^2 - 24*a*b + 8*b^2)*d*x - 48*a*b + 32*b^2)*cosh(d*x + c) + 3*(7*a^2*
cosh(d*x + c)^6 - 5*(5*a^2 - 16*a*b)*cosh(d*x + c)^4 - (63*a^2 - 528*a*b + 256*b^2)*cosh(d*x + c)^2 - 15*a^2 +
 160*a*b)*sinh(d*x + c))/(d*cosh(d*x + c)^3 + 3*d*cosh(d*x + c)*sinh(d*x + c)^2 + 3*d*cosh(d*x + c))

________________________________________________________________________________________

giac [B]  time = 0.18, size = 231, normalized size = 2.03 \[ \frac {3 \, a^{2} e^{\left (4 \, d x + 4 \, c\right )} - 24 \, a^{2} e^{\left (2 \, d x + 2 \, c\right )} + 48 \, a b e^{\left (2 \, d x + 2 \, c\right )} + 24 \, {\left (3 \, a^{2} - 24 \, a b + 8 \, b^{2}\right )} {\left (d x + c\right )} - 3 \, {\left (18 \, a^{2} e^{\left (4 \, d x + 4 \, c\right )} - 144 \, a b e^{\left (4 \, d x + 4 \, c\right )} + 48 \, b^{2} e^{\left (4 \, d x + 4 \, c\right )} - 8 \, a^{2} e^{\left (2 \, d x + 2 \, c\right )} + 16 \, a b e^{\left (2 \, d x + 2 \, c\right )} + a^{2}\right )} e^{\left (-4 \, d x - 4 \, c\right )} - \frac {256 \, {\left (3 \, a b e^{\left (4 \, d x + 4 \, c\right )} - 3 \, b^{2} e^{\left (4 \, d x + 4 \, c\right )} + 6 \, a b e^{\left (2 \, d x + 2 \, c\right )} - 3 \, b^{2} e^{\left (2 \, d x + 2 \, c\right )} + 3 \, a b - 2 \, b^{2}\right )}}{{\left (e^{\left (2 \, d x + 2 \, c\right )} + 1\right )}^{3}}}{192 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sech(d*x+c)^2)^2*sinh(d*x+c)^4,x, algorithm="giac")

[Out]

1/192*(3*a^2*e^(4*d*x + 4*c) - 24*a^2*e^(2*d*x + 2*c) + 48*a*b*e^(2*d*x + 2*c) + 24*(3*a^2 - 24*a*b + 8*b^2)*(
d*x + c) - 3*(18*a^2*e^(4*d*x + 4*c) - 144*a*b*e^(4*d*x + 4*c) + 48*b^2*e^(4*d*x + 4*c) - 8*a^2*e^(2*d*x + 2*c
) + 16*a*b*e^(2*d*x + 2*c) + a^2)*e^(-4*d*x - 4*c) - 256*(3*a*b*e^(4*d*x + 4*c) - 3*b^2*e^(4*d*x + 4*c) + 6*a*
b*e^(2*d*x + 2*c) - 3*b^2*e^(2*d*x + 2*c) + 3*a*b - 2*b^2)/(e^(2*d*x + 2*c) + 1)^3)/d

________________________________________________________________________________________

maple [A]  time = 0.34, size = 109, normalized size = 0.96 \[ \frac {a^{2} \left (\left (\frac {\left (\sinh ^{3}\left (d x +c \right )\right )}{4}-\frac {3 \sinh \left (d x +c \right )}{8}\right ) \cosh \left (d x +c \right )+\frac {3 d x}{8}+\frac {3 c}{8}\right )+2 a b \left (\frac {\sinh ^{3}\left (d x +c \right )}{2 \cosh \left (d x +c \right )}-\frac {3 d x}{2}-\frac {3 c}{2}+\frac {3 \tanh \left (d x +c \right )}{2}\right )+b^{2} \left (d x +c -\tanh \left (d x +c \right )-\frac {\left (\tanh ^{3}\left (d x +c \right )\right )}{3}\right )}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*sech(d*x+c)^2)^2*sinh(d*x+c)^4,x)

[Out]

1/d*(a^2*((1/4*sinh(d*x+c)^3-3/8*sinh(d*x+c))*cosh(d*x+c)+3/8*d*x+3/8*c)+2*a*b*(1/2*sinh(d*x+c)^3/cosh(d*x+c)-
3/2*d*x-3/2*c+3/2*tanh(d*x+c))+b^2*(d*x+c-tanh(d*x+c)-1/3*tanh(d*x+c)^3))

________________________________________________________________________________________

maxima [B]  time = 0.34, size = 211, normalized size = 1.85 \[ \frac {1}{64} \, a^{2} {\left (24 \, x + \frac {e^{\left (4 \, d x + 4 \, c\right )}}{d} - \frac {8 \, e^{\left (2 \, d x + 2 \, c\right )}}{d} + \frac {8 \, e^{\left (-2 \, d x - 2 \, c\right )}}{d} - \frac {e^{\left (-4 \, d x - 4 \, c\right )}}{d}\right )} + \frac {1}{3} \, b^{2} {\left (3 \, x + \frac {3 \, c}{d} - \frac {4 \, {\left (3 \, e^{\left (-2 \, d x - 2 \, c\right )} + 3 \, e^{\left (-4 \, d x - 4 \, c\right )} + 2\right )}}{d {\left (3 \, e^{\left (-2 \, d x - 2 \, c\right )} + 3 \, e^{\left (-4 \, d x - 4 \, c\right )} + e^{\left (-6 \, d x - 6 \, c\right )} + 1\right )}}\right )} - \frac {1}{4} \, a b {\left (\frac {12 \, {\left (d x + c\right )}}{d} + \frac {e^{\left (-2 \, d x - 2 \, c\right )}}{d} - \frac {17 \, e^{\left (-2 \, d x - 2 \, c\right )} + 1}{d {\left (e^{\left (-2 \, d x - 2 \, c\right )} + e^{\left (-4 \, d x - 4 \, c\right )}\right )}}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sech(d*x+c)^2)^2*sinh(d*x+c)^4,x, algorithm="maxima")

[Out]

1/64*a^2*(24*x + e^(4*d*x + 4*c)/d - 8*e^(2*d*x + 2*c)/d + 8*e^(-2*d*x - 2*c)/d - e^(-4*d*x - 4*c)/d) + 1/3*b^
2*(3*x + 3*c/d - 4*(3*e^(-2*d*x - 2*c) + 3*e^(-4*d*x - 4*c) + 2)/(d*(3*e^(-2*d*x - 2*c) + 3*e^(-4*d*x - 4*c) +
 e^(-6*d*x - 6*c) + 1))) - 1/4*a*b*(12*(d*x + c)/d + e^(-2*d*x - 2*c)/d - (17*e^(-2*d*x - 2*c) + 1)/(d*(e^(-2*
d*x - 2*c) + e^(-4*d*x - 4*c))))

________________________________________________________________________________________

mupad [B]  time = 0.27, size = 269, normalized size = 2.36 \[ x\,\left (\frac {3\,a^2}{8}-3\,a\,b+b^2\right )-\frac {\frac {4\,\left (a\,b-b^2\right )}{3\,d}+\frac {4\,{\mathrm {e}}^{4\,c+4\,d\,x}\,\left (a\,b-b^2\right )}{3\,d}+\frac {8\,a\,b\,{\mathrm {e}}^{2\,c+2\,d\,x}}{3\,d}}{3\,{\mathrm {e}}^{2\,c+2\,d\,x}+3\,{\mathrm {e}}^{4\,c+4\,d\,x}+{\mathrm {e}}^{6\,c+6\,d\,x}+1}-\frac {\frac {4\,{\mathrm {e}}^{2\,c+2\,d\,x}\,\left (a\,b-b^2\right )}{3\,d}+\frac {4\,a\,b}{3\,d}}{2\,{\mathrm {e}}^{2\,c+2\,d\,x}+{\mathrm {e}}^{4\,c+4\,d\,x}+1}-\frac {4\,\left (a\,b-b^2\right )}{3\,d\,\left ({\mathrm {e}}^{2\,c+2\,d\,x}+1\right )}+\frac {{\mathrm {e}}^{2\,c+2\,d\,x}\,\left (2\,a\,b-a^2\right )}{8\,d}-\frac {a^2\,{\mathrm {e}}^{-4\,c-4\,d\,x}}{64\,d}+\frac {a^2\,{\mathrm {e}}^{4\,c+4\,d\,x}}{64\,d}+\frac {a\,{\mathrm {e}}^{-2\,c-2\,d\,x}\,\left (a-2\,b\right )}{8\,d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sinh(c + d*x)^4*(a + b/cosh(c + d*x)^2)^2,x)

[Out]

x*((3*a^2)/8 - 3*a*b + b^2) - ((4*(a*b - b^2))/(3*d) + (4*exp(4*c + 4*d*x)*(a*b - b^2))/(3*d) + (8*a*b*exp(2*c
 + 2*d*x))/(3*d))/(3*exp(2*c + 2*d*x) + 3*exp(4*c + 4*d*x) + exp(6*c + 6*d*x) + 1) - ((4*exp(2*c + 2*d*x)*(a*b
 - b^2))/(3*d) + (4*a*b)/(3*d))/(2*exp(2*c + 2*d*x) + exp(4*c + 4*d*x) + 1) - (4*(a*b - b^2))/(3*d*(exp(2*c +
2*d*x) + 1)) + (exp(2*c + 2*d*x)*(2*a*b - a^2))/(8*d) - (a^2*exp(- 4*c - 4*d*x))/(64*d) + (a^2*exp(4*c + 4*d*x
))/(64*d) + (a*exp(- 2*c - 2*d*x)*(a - 2*b))/(8*d)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sech(d*x+c)**2)**2*sinh(d*x+c)**4,x)

[Out]

Timed out

________________________________________________________________________________________